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We carry out computer simulations of phase separation in diblock copolymer-homopolymer mixtures.
The homopolymer chains are assumed to be compatible with one of the blocks of the copolymers
whereas the two blocks of the copolymer chains are mutually incompatible. One of the characteristic
features of this system is that, in certain conditions, it undergoes a double phase separation. That is, by
decreasing the temperature, a macrophase separation takes place so that copolymer-rich and
homopolymer-rich domains are formed. As the phase separation proceeds, a microphase separation also
starts in the copolymer-rich domains. We study the kinetics of this double phase separation and the
domain morphology associated with the phase separations in two dimensions. It is shown that a mor-
phological transition occurs by changing the incompatibility strength between the homopolymer and one
of the blocks. When the incompatibility is weak, the microphase-separated stripe domains are perpen-
dicular to an interface between the copolymer-rich and the homopolymer-rich phases whereas when it is
strong the domains tend to be parallel to the interface. An analytical theory calculating the interfacial

energy is presented to understand this transition.

PACS number(s): 36.20.—r, 64.60.Cn

I. INTRODUCTION

Microphase separation in block copolymers has been
studied both experimentally and theoretically for more
than two decades [1]. Because of the connectivity of mu-
tually incompatible monomer blocks, the phase separa-
tion causes spatially periodic equilibrium structures such
as lamellar, cylindrical hexogonal, spherical bcc, and reg-
ular three-dimensional bicontinuous structures. These
ordered states arise by changing the block ratio. Since
the spatial period is typically of the order of several hun-
dred angstrom, we call the ordered state a mesophase.

The prediction of a possible mesophase for given pa-
rameters such as the block ratio and temperature is one
of the most important problems. Recently, some of the
ordered states have been confirmed theoretically by com-
paring the equilibrium free energy for each structure
[2-17]. Another fundamental problem is to study kinet-
ics of the microphase separation. Compared to the equi-
librium structures, however, there are only a few works
on the kinetics [18-20].

As was mentioned above, the block ratio is a key pa-
rameter for the equilibrium morphological transitions.
In order to change the block ratio effectively, experimen-
talists often add a small amount of homopolymers as a
selective solvent [21]. If one adds 4 homopolymer chains
in a A-B diblock copolymer melt, these are resolved in
the A-rich domains in the microphase-separated state.
Thus one can increase effectively the ratio of the block
length of 4 monomers to that of B monomers.

If one increases further the volume fraction of the add-
ed homopolymer, a qualitatively different behavior ap-
pears. Since the B block and 4 homopolymer are incom-
patible, one may expect a macrophase separation between
the diblock copolymer and the homopolymer. This prob-
lem was addressed theoretically for general copolymer-
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homopolymer mixtures by Hong and Noolandi [4]. They
predicted a macrophase separation at low temperatures,
which is followed by a microphase separation in the
copolymer-rich domains. However, they have not stud-
ied the dynamics of phase separation.

Quite recently, Koizumi, Hasegawa, and Hashimoto
[22] carried out an experimental study of the phase sepa-
ration of binary mixtures of polystyrene-block-
polyisoprene (SI) and homopolystyrene (HS). In the case
of a low volume fraction of SI, they observed the macro-
phase separation during the solvent evaporation process,
which is subsequently followed by the microphase separa-
tion. When a lamellar structure is formed in the
copolymer-rich domains, an onionlike pattern dispersed
in a continuous matrix of HS is observed by transmission
electron microscopy. In the case of the mixture with a
cylinder-forming block copolymer, the macrodomains
take a lenslike shape, in which cylindrical microdomains
are packed hexagonally.

In this paper, we study the dynamics and morphology
of phase separation in diblock copolymer-homopolymer
mixtures. Each copolymer chain is composed of 4 and B
monomers with a short-range repulsive interaction be-
tween them. The interaction between the homopolymer
with C monomers and the B monomers in the copolymer
is also assumed to be repulsive. We will show that a ma-
crophase separation triggers a microphase separation for
suitable volume fractions and chain lengths and hence cu-
rious domain patterns appear. The kinetics of this double
phase separation and domain morphology will be investi-
gated in detail.

We here introduce a simple dynamical model in terms
of the local volume fractions of each monomer, which is
an extension of the static theory of microphase separation
[6]. Some of the investigators [2,9,11] have developed,
for the equilibrium problem, a formulation based on a
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more microscopic picture in terms of chain conforma-
tion. However, such an approach is not very useful for
the domain growth problem in the course of phase sepa-
ration. An analytical treatment of the chain motion in
randomly interconnected domains seems formidable and
computer simulations of chain dynamics are difficult to
perform for a large system where sufficiently many
domains must be contained. We have shown in a previ-
ous study [23] that the coarse-grained method in terms of
the local volume fractions has predicted anomalous rheo-
logical properties of microphase-separated structures.

We shall carry out computer simulations of the model
system in two dimensions by means of a cell dynamical
method [24]. Computer simulations indeed reveal a dou-
ble phase separation. That is, a macrophase separation
between the copolymers and the homopolymers takes
place first, and then a microphase separation proceeds in
the copolymer-rich phase. Depending on the block ratio
of the copolymer chains, lamellar and hexagonal domains
appear. One of the remarkable results obtained by simu-
lations is that there is a morphological transition in the
lamellar structure. When the repulsive interaction be-
tween the homopolymers and the B blocks is weak, the
lamellar domains are perpendicular to the interfaces that
separate the copolymer- and homopolymer-rich domains,
while when the interaction is sufficiently strong the
striped domains are parallel to the interfaces.

In order to investigate the kinetics of the above double
phase separation, we evaluate the scattering function in
the course of the domain growth. It is shown that the
domain morphology and the kinetics are mutually corre-
lated. That is, the domain growth for the perpendicular
morphology is not much different from that in an ordi-
nary spinodal decomposition. However, in the case of
the parallel morphology, growth of the macrophase-
separated domains becomes extremely slow.

Because both the macrophase and microphase separa-
tions occur in the present system, the domain patterns
are complicated. We use the following terminology in or-
der to avoid confusion. By a macrodomain, we mean a
domain caused by the macrophase separation. On the
other hand, a microdomain is a domain of a lamellar or
hexagonal structure due to the microphase separation.
We also often use the word “macrointerface” indicating a
boundary separating macrodomains of copolymer-rich
and homopolymer-rich phases.

In the next section, we describe our model equations.
The results of computer simulations are presented in Sec.
III. In Sec. IV, we develop a theory for the morphologi-
cal change from the parallel to the perpendicular struc-
tures of lamellar domains. Calculation of the interfacial
energy of each structure shows a clear morphological
transition by changing the interaction strength. We give
discussions and concluding remarks in Sec. V.

II. DYNAMICAL MODEL

We consider a system with A-B diblock copolymer and
C homopolymer having the polymerization indices N 4,
Np, and N.. The block ratio f is defined by
f=N_,/(N 4+Np). The local volume fractions of these
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monomers are denoted, respectively, by ¢,, ¢,, and ¢..
Under the incompressibility condition, two of these are
independent. It is convenient to take ¢=¢,—¢, and
Y=¢,+¢, as the independent variables. That is, the
variable 1 is useful to describe segregation of the copoly-
mer and the homopolymer while ¢ plays a role of an or-
der parameter in a microphase separation as in the previ-
ous theories [3,6]. The model free energy for copolymer-
homopolymer mixtures in terms of 3 and ¢ consists of
short-range and long-range parts:

F{,¢}=Fs{$,¢} +FL {4, ¢} .

The short-range part Fg is the usual Ginzburg-Landau-
type free energy and is given by

(2.1

— 1 2, C2 2
Fs(w,¢}=[dr | S-(V$)+ (V4P + W (i) |, (22)

where ¢, and c, are positive constants. The local interac-
tion W is generally difficult to evaluate from first princi-
ples. One of the simplifications is to employ the Flory-
Huggins approximation as was done in Ref. [25] where
the A-B copolymer is regarded as an A4-B polymer blend.
However, we here take a phenomenological approach and
assume the form of W as

W(ﬂ’¢)=81(77)+82(¢)+b177¢—]7b27l¢2—%b3772¢ >
(2.3)

where b, and b, are positive constants. The other con-
stant by vanishes for f=1 and put as
b;=by(1/N,—1/Ng) with b, a positive constant. We
have introduced a new variable n as =1y —1, where ¥,
is the volume fraction at the critical point of the macro-
phase separation. The functions g(7) and g,(¢) are as-
sumed to be an even function with respect to the argu-
ment. Below the macrophase-separation temperature,
g,(7n) exhibits a double-well potential. On the other
hand, g,(¢) is not necessarily double well in the
macrophase-separated state.

The physical meanings of the remaining three terms in
(2.3) are clear. The term with the factor b, arises from
the short-range interaction between the monomers. Let
us put the interaction strength between i and j monomers
as u; (i,j= A,B,C) so that the energy arising from the
short-range interaction is written as

1
> 2 Uy [dre.e; . (2.4a)
l’j
The constant b, is given in terms of u;; by
by=Xu,  —upgp)—i(u c—upc) . (2.4b)

Thus when the repulsive interaction between the B block
and C homopolymer is sufficiently strong compared to
other pairs, the constant b, is positive.

The term with the coefficient b, violates the symmetry
of the free energy under the transformation — —7 and
¢— —¢. This term is necessary in order to require that a
microphase separation- should occur only in the
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copolymer-rich phase. In fact, the b, term implies that a
large absolute value of ¢ is energetically favorable in the
region 7> 0.

In order for the last term to be invariant under the
transformation p— —7 and ¢— —¢, the constant b,
must change sign under the interchange between A4 and
B. The expression for b; given just below (2.3) indeed
satisfies this condition.

Finally, we should mention that the terms linear in 7
and ¢ have been ignored in (2.3) because they are redun-
dant to the dynamics. Thus (2.3) is the minimal model
for the short-range part of the free energy of the
copolymer-homopolymer mixtures.

We have verified that the Flory-Huggins-type approxi-
mation mentioned above and an expansion in powers of 77
indeed give us a local part like (2.3). It is noted that the
free energy (2.3) has a similarity to those studied in eutec-
tic growth [26] and microemulsions [27].

One of the characteristic features of the copolymer sys-
tems is that there is a Coulomb-type long-range repulsive
interaction in the free-energy functional [6]. This long-
range interaction originates from the reduction of confor-
mation entropy of each polymer chain due to the chain
connectivity at a junction point. It is emphasized that
coexistence of a repulsive long-range interaction and the
attractive short-range one as the second term in (2.2) is a
fundamental mechanism for a periodic structure in equi-
librium [28,29].

In the present case, the long-range part is given by

F{,¢)= [dr [drG(r,r)

g—&ﬁ( r)8¢(r')+Bo¢(r)dy(r’)

+32’—8¢(r)5¢(r') (2.5)
where G(r,r') is defined through the relation
—V2G(r,r')=8(r—r’) and 8¢(r)=¢(r)—¢ with ¢ the

spatial average of ¢. The constants a, 8, and y are given,
respectively, by

1 1 )?
=g |——+—1, 2.
a=a v, ", (2.6a)
1 1
= |, (2.6b)
g {Na N3
2
—, |1
Y=a N, N, , (2.6¢)

where a is a positive constant. These formulas can be de-
rived from Egs. (A.20) and (D.3) in Ref. [6].

Note the relation f>=ay so that there must be a zero
eigenvalue for the matrix M with the elements M, =a
M,,=M, =B, and M,,=v. In fact, by the linear trans-
formation

¢ =

(7’1/""345) (2.7a)

VvV BI+ 2 32
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Y= (W Bé) , (2.7a)

V B+ /32
the matrix M is dlagonalized and the free energy F; sim-
ply becomes

Fy=Xa+y) [dr [drG(r,r')¢ (n)¢'(r) (2.8)
It is noted from (2.6) and (2.7) that the spatial average of
¢’ is identically zero.

The equilibrium property is readily calculated from
(2.2) and (2.8). For instance, the phase diagram for the
spinodal lines of the macrophase and microphase separa-
tions is found to be essentially the same as that in Fig.
8(b) in Ref. [22].

Now we construct a dynamical model. First of all, we
omit any hydrodynamic effects. The hydrodynamic in-
teraction between polymer chains may not be entirely ig-
nored in the kinetics of phase separation even in
copolymer-homopolymer melts. However, simulations
including the hydrodynamic interaction is time consum-
ing. Furthermore, we expect that the morphological
change of ordered domains found in the simulations de-
scribed in the next section is not altered qualitatively by
the hydrodynamic effects. Second, we do not consider
thermal fluctuations since the domain growth in the
length scale of several tens of nanometers is not much
influenced by thermal fluctuations except for the very
early stage.

Thus the phase separation of copolymer-homopolymer
mixtures is modeled by the following coupled set of equa-
tions in terms of ¢ and :

at 81/; (2.9a)
9 _ 2 OF
ot =L,V — 56 ’ (2.9b)

where the transport coefficients L, and L, are positive.
The relative magnitude of these coefficients are not
known experimentally. Here we assume, for simplicity,
that these two are comparable. Since a polymer chain is
an extended object, a nonlocal effect in the length scale of
the radius of gyration appears generally in the transport
coefficients [30,31]. However, we have neglected it as
well as the possible dependence of L; and L, on ¢ and ¢.

III. COMPUTER SIMULATIONS

We have carried out computer simulations of Egs. (2.9)
by a cell dynamical system approach [24]. In two dimen-
sions, the space is divided into 128 X 128 square cells with
periodic boundary conditions. The size of a cell is put to
be unity. The form of the local interactions g;(x) (i =1
and 2) is chosen as dg;(x)/dx = — A;tanhx +x with the
coefficient 4,=1.3 and 4,=1.1. Thus the macrophase
separation takes place first. As the value of ¢ increases,
the microphase separation starts because of the interac-
tion term 7¢? in (2.3). The initial values of ¢ and 7 at
each cell are assigned randomly around their spatial aver-
ages. The Onsager coefficients L; and L, are assumed to
be the same; L =L,=1.
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Because ¢ is the volume fraction of the copolymer, its
absolute value must be smaller than unity. In the above
choice of g;, however, we have removed this condition
supposing that ¢ and ¢ are suitably rescaled.

A. Lamellar microdomains

First, we consider the case of f = where a lamellar
structure is expected to appear in a microphase-separated
phase. The constants bs, B, and ¥ in (2.3) and (2.5) van-
ish identically.

_ Figure 1 displays the domain growth obtained for
¢=7=0, ¢;=c,=0.5, a=0.02, b;=0.07, and b,=0.2

FIG. 1.
t = 1000, 4000, 16 000, and 64 000 from top to bottom. The sys-

Domain pattern for ¢=#=0 and b;=0.07 at

tem size is 128X 128. The white color indicates a
homopolymer-rich domain. The gray (black) color indicates a
domain where ¢ is smaller (larger) than 0.15. The figures on the
right-hand side display the profile of ¢(x) and 7(x) along the
line y =64. The scale of the axes is shown in the top figure.
The line with the larger amplitude indicates 7(x) whereas the
line with smaller amplitude is ¢(x).
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at ¢ = 1000, 4000, 16 000, and 64 000 from top to bottom.
A copolymer-rich domain for >0 is drawn by gray
color whereas a homopolymer-rich domain for 7 <0 is in-
dicated by white color. In this figure as well as in Figs.
2-4 below, the regions where ¢ is larger than 0.15 are
shown by black color. The spatial variation of ¢ and 7
along the line y =64 is shown in the figures on the right-
hand side. At an early stage ¢ =1000, interconnected
domains of gray and black colors appear. This is the ma-
crophase separation between the copolymer-rich and the
homopolymer-rich phases. Since there are fairly large
amount of A4 blocks in the homopolymer-rich domains,
those are drawn not by white but by black color. Actual-
ly one can see that there are more A4 blocks in the
homopolymer-rich domains and more B blocks in the
copolymer-rich ones. However, this does not mean a mi-
crophase separation since the magnitude of their spatial
variation is weak. What happens is that the wavelength
of the variation of ¢ is forced to be comparable to the
characteristic domain width of macrodomains. This will
be clearer in Fig. 7(c) below.

The microphase separation starts only at about
t =4000 after copolymer-rich domains become
sufficiently large. It is noted that as the phase separation
proceeds, the random bicontinuous domains change to
disconnected copolymer-rich domains. This arises, for
b,=0.07, from the strong violation of the symmetry of
the local part W in (2.3) under the interchange n— — 7.

It should be noted that in most parts of the macro-
domains, the lamellar domains tend to be parallel to the
macrophase interfaces and that each copolymer-rich
domain is surrounded by a thin layer of the A blocks.
The domain patterns in Fig. 1 are qualitatively quite simi-
lar to those observed experimentally by a transmission
microscope [32].

This should be compared with the pattern evolution in
Fig. 2 where b; =0.03 and other constants and time steps
are the same as those in Fig. 1. There are white domains
even at ¢t =1000, indicating that the A4 blocks are not
much dissolved in the homopolymer-rich domains be-
cause of the weakness of the interaction b;. As the mi-
crophase separation proceeds, the stripe domains emerge
perpendicularly to the macrophase interfaces. Thus there
is a clear morphological transition by changing the in-
teraction parameter b,. We have examined the transition
in detail by changing the value of b, and found that the
morphological change occurs at about b, =0.04. In Fig.
2, the asymmetry of the pattern between the copolymer-
rich and homopolymer-rich domains at the later stage is
weak compared to that in Fig. 1.

Figure 3 is the pattern evolution for $=0, 7= —0.2,
and b, =0.05 where disk-shaped domains grow. A con-
centric pattern due to the microphase separation emerges
in each domain. Since the average size of domains is
rather small and is comparable to the period of the
microphase-separated structure, there are no onion-ring-
like domains with many layers. As will be shown in Fig.
8, once concentric domains are formed, the kinetics of
the macrophase separation becomes extremely slow.

If we decrease the value of b, slightly as b, =0.03, we
have a different morphology as shown in Fig. 4. That is,
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at an early stage of the macrophase separation where the
domains are small, the pattern is concentric. However,
as the macrophase-separated domains become large, the
microphase-separated domains tend to be perpendicular
to the macrophase interface. This is the same property as
in Fig. 2. It is also evident that there is a tendency such
that the lamellar domains are parallel to the short princi-
pal axis of an elliptic macrodomain. One can also see
from Figs. 3 and 4 that the growth kinetics is slower in
Fig. 3.

B. Hexagonal microdomains

When the block ratio f is away from 1, a lamellar
structure becomes unstable and a hexagonal structure of
disconnected domains is formed. Here we study the dou-
ble phase separation for = —0.2 which roughly corre-
sponds to f =0.4. In this case, the coefficients of all the

terms in (2.2), (2.3), and (2.5) are nonvanishing. In the

i
AT

128

0  space

AR
VAR ML

FIG. 2. Domain pattern for ¢=%=0 and b,=0.03 at
t =1000, 4000, 16 000, and 64 000 from top to bottom. Other
details are the same as in Fig. 1.
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simulations, we fix these parameters as b,=0.2,
b;=0.01, a=0.02, B=0.002, and ¥ =0.002 and the spa-
tial average 7j=0.

Figures 5(a) and 5(b) display the domain patterns at
t =64 000 for b, =0.05 and O, respectively. A white area
is the area where 7 is negative. The region where ¢ is
positive is drawn in black. (Note that this is different
from in Figs. 1-4.) The copolymer-rich domains tend to
be rounded in Fig. 5(a) while the macrodomains in Fig.
5(b) are mutually interconnected. In Fig. 5(a) there is a
thin layer of the A4 blocks just outside the copolymer-rich
domains. We have verified numerically that the conser-
vation of ¢ and 7 is satisfied in simulations. The hexago-
nal structures themselves are not much different from
each other in these figures.

C. Scattering functions

In order to analyze the kinetics of the domain growth,
we have made the Fourier transform of ¢(r,t) and 7(r,?)
at each time step and calculated the time evolution of the
scattering intensities:

Sp()={¢yd_y)

and

(3.1a)

L(O)={mn_y) , (3.1b)

FIG. 3. Domain pattern for $=0, = —0.2, and b, =0.05 at
t =4000, 16 000, and 64 000 from top to bottom. Other details
are the same as in Fig. 1.
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t = 4000

FIG. 4. Domain pattern for $=0, 7= —0.2, and b, =0.03 at
t =4000, 16 000, and 64 000 from top to bottom. Other details
are the same as in Fig. 1.

where the average { --- ) is taken over the initial ran-
domness. The scattering intensities are averaged over 10
independent runs.

Here we restrict ourselves to the case f=1. A typical
example is shown in Fig. 6 for §=7=b,=0. In this
case, the microdomains take a perpendicular morpholo-
gy. The left peaks are the intensity I,(¢) at ¢t =1000,
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2000, 4000, 8000, 16000, and 32000 from low to high
peaks while the right ones show S,(7) in the same
manner. Note that we have different scales for S, (¢) and
I, (). Actually Sy(¢) is magnified by the factor of 25
compared with I, (¢). The time evolution of I} (¢) is qual-
itatively the same as that of an ordinary spinodal decom-
position in polymer blends. The peak position k;, and
the peak height I,, of I, depend on time approximately
as

ky=t° (3.2a)

and

I,=t® (3.2b)
with @ =0.35 and b =0.64. [The exponent a should not
be confused with the constant a appeared in (2.6).] The
exponents a and b are quite close to 4 and %, respectively,
which are expected in the late stage of ordinary spinodal
decomposition. The peak position of the other intensity
Sy (#) is almost time independent. This is expected for
small values of b; since the merging microstructure is
spatially periodic and the wave number of the initial un-
stable mode is not much different from that of the final
structure in the weak segregation regime. The peak
height S, does not obey a power law but it grows slower
at the later time.

The time dependence to the peak height and the peak
position of the scattering functions is summarized in
Figs. 7 and 8. These are a double logarithmic plot of the
peak intensity versus time and the peak position versus
time. Figure 7 compares the time evolution of the per-
pendicular and the parallel morphologies, respectively,
for b;=0 and 0.08. The average volume fractions are
#=7=0. The exponent b of I, for b, =0 is estimated
from the straight line in Fig. 7(a) and is given approxi-
mately by b =0.64 as mentioned above, while that for
b,=0.08 in Fig. 7(c) is smaller, i.e., b =0.48. The time
dependence of S, for b, =0 is slower than a power law
and is almost constant for b, =0.08.

The exponent a for I, is approximately equal to 0.35

FIG. 5. Domain pattern at
t=64000 for ¢=-—0.2, 7=0
and (a) for b;=0.05 and (b) for
b;=0. A homopolymer-rich
domain is indicated by while
color. The microphase-
separated domains are shown by
black color for ¢>0 and gray
color for ¢ <0. Other details are
the same as in Fig. 1.
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FIG. 6. Time evolution of the scattering functions I, (left
curves) and S (right curves) as a function of the wave number
for $=7=0 and b, =0. The scaled wave number k, is defined
by ko=m/64. The scale of the vertical axis in this figure and
Figs. 7 and 8 below is in arbitrary units.

for b, =0 and to 0.36 for b;=0.08. It is noted that the
peak wave number of S, for b;=0.08 slightly increases
with time. In the early stage of macrophase separation,
the spatial variation of ¢ is adjusted by the average size of
the macrodomains as was mentioned in Sec. IIT A. This
is the reason that the peak wave number of I, and S| is
almost the same value initially as can be seen in Fig. 7(d).

~
o
~

(b)
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As the macrodomains grow, another microdomain can
merge in a macrodomain so that the characteristic wave
number for microdomains increases. This is an impor-
tant property of domain growth in the parallel morpholo-
gy.

Figure 8 shows the kinetics of disconnected macro-
domains for $=0 and 7j=—0.2. We compare again two
morphologies for b, =0 and 0.05. The exponents @ and b
for b, =0 in Figs. 8(a) and 8(b) are approximately given
by @ =0.27 and b =0.53. On the other hand, the peak
height of I, in Fig. 8(c) for onion-ring-like domains,
b,=0.05, ceases apparently to grow at a later time. A
similar behavior can also be seen in the time evolution of
the peak position as in Fig. 8(d). This is another charac-
teristic feature of the parallel domain morphology. Be-
cause of the finite-size effect, however, it is difficult to
confirm whether the domains presumably stop to grow or
not.

IV. INTERFACIAL ENERGY

In order to understand the morphological transition
observed by computer simulations in the preceding sec-
tion, here we calculate the interfacial energy of a
macrophase-separated domain boundary. As depicted in
Fig. 9, we consider two kinds of lamellar structures for
f =1. Figure 9(a) displays a domain configuration where
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2 L ]
o
S
A
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10 S .1 ]
"S' i 10
S ] & e ;
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= gk 2 ]
o 10
= . . ‘ ol . .
~ 3 4 5 10 3 g 5
10 10 10 10 10 10 FIG. 7. Time evolution of the peak intensity
Time steps Time steps and the peak height for $=7%=0. The crosses
indicate the value associated with I, while the
triangles indicate the value of S;. (a) Intensity
(©) (d) for b;=0, (b) peak position for b; =0, (c) in-
tensity for b; =0.08, and (d) peak position for
— ‘ ‘ ‘ T ' ' b, =0.08.
" L ]
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g
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. 0 . 0 FIG. 8. Time evolution of the peak intensity
Time steps Time steps and the peak height for =0 and 7= —0.2.
The meaning of the symbols is the same as that
in Fig. 7. (a) Intensity for b, =0, (b) peak posi-
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a homopolymer-rich phase is on the left half plane x <0,
while on the right half plane, there are microphase-
separated stripe domains that are perpendicular to the in-
terface located at x =0. On the other hand, the lamellar
domains are parallel to the interface in Fig. 9(b). We
shall calculate the free energy of each domain structure
by means of a variational method. Without loss of gen-
erality, we restrict ourselves to two dimensions. Hereaf-
ter we call the domain pattern in Fig. 9(a) case I and that

in Fig. 9(b) case II.
J

We assume that the interface width is much smaller
than the spatial period of the lamellar structure and that
the microphase separation is in a weak segregation re-
gime. This is in accord with the present computer simu-
lations. Because of the existence of a macrophase bound-
ary, the lamellar structure is generally expected to be de-
formed near the interface. However, we ignore this effect
avoiding an unessential complication in the theoretical
treatment.

When f =1, the free energy (2.1) turns out to be

c c
F{n,¢}= fdr —zl—(vn)2+ —23(V¢)2+g1(77)+g2(¢)+b117¢—%bzngbz

a o o
+2- [ar [drGre) 0 —Fl(r)—4] .

The spatial variation of ¢ in the weak segregation regime
can be written as ¢ < cosgx. The wave number q is deter-
mined by the minimization of the nonlocal terms in (4.1),
i.e., the second and the last terms. After the Fourier
transform, those are given by

[da

This gives us the first growing wave number g, at the

€ ,,al

4.1)

[

transition point as g2=(a/c,)!”2. In the weak segrega-
tion, we may expand 1/¢? in the long-range interaction
in powers of g2—g2 so that the free energy (4.1) becomes
the Brazovskii form [3,33]

= ‘1 2_ & 2, A 2,12
F{n,¢}= [dr|—-(Vn) T (VS E(V)

c

+ %¢2+(other local parts) | ,  (4.3)
q

c
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FIG. 9. Schematic representation of (a) perpendicular

configuration and (b) parallel configuration. A macrointerface
separating a homopolymer-rich phase (x <0) and copolymer-
rich phase (x > 0) is along the line x =0.

where we have ignored an additive constant.

Now we consider the domain structure of the case I.
We put the nonuniform equilibrium solutions of n and ¢
as

n(x )= A tanhkx , (4.4)

o(x)= %( 1+tanhkx)sing,y ,
where the constants 4, B, and k should be determined by
the minimization of (4.3). It will be shown below, howev-
er, that these precise values are unnecessary in compar-
ison with the interfacial energy.

(4.5)

2
ABg? |1 ABk?
20\2 — ¢ -
[ ar(v?¢) o | 2Ll +L | %
ABqC2
2

A’B 1 .
fdr 77¢=Ly———-2 q—C20s1nqch .
c

In case I, the second term in curly brackets in (4.10) does
not exist. (4.11) was identically zero in case I as men-
tioned above. When the macrophase separation is in
strong segregation, i.e., 2wk /g, >>1 as we have assumed,
the first term in curly brackets in (4.10), which is positive,
is most dominant in the interfacial energy. From this
fact together with (4.11), the interfacial energy is found to

2
7 C62

2k ——C,o+(ABk*)( ABg})—
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Substitution of (4.4) and (4.5) into (4.3) yields the equi-
librium free energy for the domain configuration of case
I. In this calculation, we employ an approximation such
that all the higher harmonics of sing,y are neglected.
This is allowed in a weak segregation limit. It is readily
seen that each term in (4.3) causes two different contribu-
tions. One is the bulk free energy proportional to the sys-
tem size. The other is linearly dependent on the interface
length (area). We identify this with the interfacial ener-
gy. For instance, we obtain

Bq 1 ABk | 1
2__ ¢ - == | —
[ dr(vgr= 5 L LLy+ |5 | 37 Caly
ABgq,
-5 Z—IkCZOLy , 4.6)

where L, (L)) is the linear dimension of the x (y) direc-
tion of the system. The constant C,,, is defined by

Cop= [ dx =20

One of the important facts is that because of the factor
sing.y in (4.5), the term linear in ¢ in (4.3) vanishes iden-
tically:

blfdr n$=0 .

Next we evaluate the equilibrium free energy for case
II. The profile of 7 is the same as (4.4). The lamellar
structure in Fig. 9(b) is expressed as

_sinh"x_

4.7)
cosh™x

(4.8)

$(x)= %( 1+ tanhkx)cos[q, (x —x,)] , .9)
where we have introduced the phase factor x, which will
play an essential role in the interfacial energy and will be
determined by the free-energy minimization.

As in case I, we substitute (4.4) and (4.9) into (4.3) ig-
noring the higher harmonics of cos[q.(x —x,)]. The
contributions from each term in (4.3) are almost the same
as those in case I. The difference appears only in the fol-
lowing two terms:

( ABkg, ) ch

Cpi» (4.10)

2k

(4.11)

[
take a minimum value at g.xo = — /2.

In this way, we obtain the difference of the interfacial
energies o and oy of cases I and II as

__A’B 1
UH_UI_T“q_
c

aB

203 (4.12)

2 kCo—b1Cao
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This implies that when the condition

(4.13)

is satisfied, the interfacial energy oy is lower than o;. We
have used the facts that the C,;=2 and C,y,=4%. Thus if
one increases the incompatibility strength b, defined by
(2.4b), case II is energetically more favorable than case I.
Thus the domains tend to align parallel to the macro-
phase interfaces.

Using the values ¢=0.02, B=~0.6, k=0.3 and
q.~0.45 consistent with the simulations, the critical
value b1 is estimated from (4.13) as 5§ ~0.01-0.02. This
is slightly smaller than but qualitatively in agreement
with b{ =0.04 obtained by simulations.

The reason as to why the theoretical value of b§ is
smaller than that of simulations can be understood partly
as follows: Lamellar domains start to grow in the center
part of a copolymer-rich domain, which is randomly in-
terconnected with the homopolymer-rich one. Since the
system is isotropic and there is no preferable orientation
of the lamellar structure, it is statistically rare that the
microphase-separated stripe domains happen to be paral-
lel to the macrointerfaces. As a result, the microdomains
must touch the macrointerfaces as they grow. This
occurs when the value of b, is not very large. Once this
happens, the lamellar domains tend to align perpendicu-
larly to the macrointerfaces to diminish the energy be-
tween A-rich and B-rich microdomains, i.e, the length of
the stripe. Although this perpendicular configuration
causes higher interfacial energy of the macrointerface for
moderate values of b,, the microdomains cannot reorient
to a parallel configuration because it requires reconnec-
tion of the domains and causes extra energy. The above
argument implies that the perpendicular morphology ob-
served for 0.01 < b, <0.04 is a metastable state.

As can be seen in Fig. 4 for small values of b,, the
lamellar domains are parallel to the smaller principal axis
of an elliptic macrodomain. This is also understood by
the interfacial argument. When b; is small, a domain
configuration of the case I is energetically more favorable
and hence the microdomains take the pattern as in Fig. 4
to enlarge the interfacial area of the case I. The situation
is essentially the same as an equilibrium crystal shape
determined by an anisotropic interfacial energy.

As was mentioned above, the phase factor is given by
q.xo= —m/2. Substituting this into (4.9), we note that a
small bump exists in the profile of ¢ just a copolymer-rich
domain. This is consistent with spatial variation of ¢
shown in Fig. 1.

V. DISCUSSIONS

We have studied the phase separation in copolymer-
homopolymer mixtures. Computer simulations of the
model equations have indeed realized the double-phase
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separation. A morphological transition has been found
by changing the interaction strength [34]. When b, is
large, the microphase-separated lamellar domains are
parallel to the macrointerfaces. When b, is smaller than
about 0.04, the lamellar domains are perpendicular to the
interfaces. We have confirmed theoretically that the
difference of the interfacial energy for these two domain
configurations is the origin of this transition [35].

The concentric domains obtained by simulations as in
Fig. 3 have only a few lamellar layers. In principle, it is
possible to realize a concentric domain having more lay-
ers by delaying the microphase separation, i.e., by chang-
ing the ratio 4,/ A4, introduced in the beginning of Sec.
III. However, there is technical difficulty that the anisot-
ropy due to the infinite cell size appears by changing
these parameters so that we have not attempted to pro-
duce multilayer domains in the simulations starting from
the disordered state.

We emphasize that the long-range interaction in (4.1)
plays a decisive role of the morphological transition. If
one considered only the local interaction given by the b,
term in (4.1), one could not understand the existence of
the perpendicular morphology. It should be noted, how-
ever, by an electrostatic analogy that the parallel mor-
phology gives a larger contribution to the interfacial en-
ergy. This is indeed the case in (4.12), which indicates a
competition between the b, term and the (V24)? term
which arises from the long-range interaction.

Kinetics of phase separation is also found to be affected
by the growing domain morphology. The growth
behavior of the perpendicular configuration is essentially
the same as that of spinodal decomposition in polymer
blends. On the other hand, the macrodomain growth
especially for the block ratio f =0.5 and the volume frac-
tion 7= —0.2 is quite slow once the concentric micro-
domains are formed in the copolymer-rich macro-
domains. It is a remaining problem to develop a theory
for this slow kinetics, e.g., by means of an interfacial ap-
proach. However, in the picture of polymer chains, the
anomalous growth can be understood as follows. Note
from Fig. 1 that there are B blocks just inside a
copolymer-rich domain. Since A4 blocks are compatible
with C homopolymers in the matrix, they tend to accu-
mulate just outside the macrointerface and form a small
bump in the concentration profile. Thus a bilayer of A4
and B blocks is constituted along the macrointerface.
This makes the interfacial energy low and furthermore
inhibits the diffusion of the homopolymer chains across
the interface of that coarsening of the macrodomains is
suppressed. It is noted that this slow growth is similar
somehow to that found in polymer blends with added
copolymers as a surfactant [25].

We have considered a mixture of 4-B diblock copoly-
mers and C homopolymers. In this case, one may change
the parameter b, without altering the macro- and the
micro-phase-separation temperatures substantially if one
chooses appropriately the interaction parameters u;; in
Eq. (2.4a). In the case of A-B copolymers and 4 homo-
polymers as in the experiments [22], varying b; would
cause a shift of the transition temperatures and hence
affect the degree of phase separation. Thus a mixture of
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A-B diblock copolymers and C homopolymers will be
more suitable to detect experimentally the morphological
transition found in simulations.

Finally, we mention that phase separation of
copolymer-copolymer mixtures is also studied by a gen-
eralization of the present model system, which will be
published elsewhere in the near future.
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FIG. 9. Schematic representation of (a) perpendicular
configuration and (b) parallel configuration. A macrointerface
separating a homopolymer-rich phase (x <0) and copolymer-
rich phase (x >0) is along the line x =0.



